The Importance and Challenges of Assessing Stellar Feedback

Laura A. Lopez (The) Ohio State University Twitter: @ohdearz

2 Ms Chandra Obs: 0.3-1.5 keV 1.5-2.5 keV 2.5-7 keV

Group & Collaborators

KatieTyler Holland-GraceNessSebastianAuchettlAshfordOlivierMaykerLopez

Prof @OSU PhDOSU PhDOSU PhDOSU PhDUMelbourneStudentStudentStudentStudent

Other collaborator folks: Anna Rosen (Harvard), Isha Nayak (STScI), Megan Reiter (UK ATC), Dustin Nguyen (OSU), Tim Linden (Stockholm), Todd Thompson (OSU), Adam Leroy (OSU), Mark Krumholz (ANU), Alberto Bolatto (Maryland), Enrico Ramirez-Ruiz (UCSC)

Conclusions

Stellar feedback, the injection of energy and momentum by stars, is important on small (~1 pc) and large (>10 kpc) scales

There are many challenges to assessing feedback: 1) dynamic range; 2) need observational constraints; 3) where is the energy/momentum deposited?; 4) there are many mechanisms that vary with time & conditions

There are observational and theoretical solutions to each problem, and a lot of progress in the last 5 years assessing dynamical role of feedback on small & large scales

Multiwavelength approach enables evaluation of comparative role of feedback modes versus e.g., stellar age, conditions

X-ray and gamma-ray observations constrain presence / properties of galactic outflows from star-forming galaxies.

Importance of Feedback

Identified in the late 1970s that stellar feedback is necessary to form realistic disk galaxies (White & Rees 1978)

Guedes et al. 2011

Importance of Feedback

Importance of Feedback

Large Scale (>kpc)

Realistic stellar masses and bulges in galaxies (e.g., White & Rees78; Keres+09)

Formation of bulgeless dwarf galaxies (e.g., Mashchenko+08; Governato+10)

Galaxy luminosity function and the mass-metallicity relation (e.g., Kauffman+94; Cole+1994; Somerville & Primack99)

Star formation efficiency on galactic scales (e.g., Kennicutt98)

Kpc-scale galactic winds (e.g., Veilleux+05)

Small Scale (<100 pc)

Creates ISM phase structure (e.g., McKee & Ostriker77)

Low star formation efficiency in giant molecular clouds (e.g., Zuckerman & Evans74; Krumholz & Tan07)

Disruption & destruction of GMCs (e.g., Matzner02; Krumholz+06)

Drives turbulence (e.g., Mac Low & Klessen04; Offner & Liu16)

Triggers star formation (e.g., Elmegreen98; Deharveng+05)

In the Feedback Loop - Small Scales

Stellar feedback: the injection of energy & momentum by stars

Protostellar Jets

Quillen+05, Cunningham+06, Matzner07, Nakamura+08, Cunningham+09, Wang+10, Krumholz+12, Offner+14, Li+15, Matzner+15, Bally16, Offner+17, Murray+18

In the Feedback Loop - Small Scales

Stellar feedback: the injection of energy & momentum by stars

Protostellar Jets

Quillen+05, Cunningham+06, Matzner07, Nakamura+08, Cunningham+09, Wang+10, Krumholz+12, Offner+14, Li+15, Matzner+15, Bally16, Offner+17, Murray+18

Radiation Pressure (direct and dust-processed)

Jijina+96, Krumholz&Matzner09, Fall+10, Krumholz+10, Draine+11, Murray+11, Skinner+15, Gupta+16, Kim+16, Raskutti+16, Rodriguez-Ramirez+16, Raskutti+17, Ali+18, Kim+18, Krumholz18, Tsang+18

Photoionization Heating

Whitworth79, Dale+05, Dale+14, Geen+16, Gavagnin+17, Ali+18, Haid+18, Kim+18, Kuiper+18, Shima+18

Stellar Winds

Yorke+89, Harper-Clark+09, Rogers+13, Dale+14, Goldsmith+17, Rahner+17, Haid+18, Naiman+18, Wareing+18

Simulating Photoionization + Winds

In the Feedback Loop - Small Scales

Stellar feedback: the injection of energy & momentum by stars

Protostellar Jets

Quillen+05, Cunningham+06, Matzner07, Nakamura+08, Cunningham+09, Wang+10, Krumholz+12, Offner+14, Li+15, Matzner+15, Bally16, Offner+17, Murray+18

Radiation Pressure (direct and dust-processed)

Jijina+96, Krumholz&Matzner09, Fall+10, Krumholz+10, Draine+11, Murray+11, Skinner+15, Gupta+16, Kim+16, Raskutti+16, Rodriguez-Ramirez+16, Raskutti+17, Ali+18, Kim+18, Krumholz18, Tsang+18

Photoionization Heating

Whitworth79, Dale+05, Dale+14, Geen+16, Gavagnin+17, Ali+18, Haid+18, Kim+18, Kuiper+18, Shima+18

Stellar Winds

Yorke+89, Harper-Clark+09, Rogers+13, Dale+14, Goldsmith+17, Rahner+17, Haid+18, Naiman+18, Wareing+18

Supernovae

Rogers+13, Kim & Ostriker15, Martizzi+15, Walch+15, Geen+16, Haid+16, Kortgen+16, Gentry+17, 18, Zhang+18

Cosmic Rays

Shock-Heated Gas - Observable in X-rays

Stellar winds and supernovae shock-heat gas to 10⁷ K temperatures and are observable in X-rays

30 Doradus 2 Ms *Chandra*

M51 750 ks *Chandra*

Cosmic-Ray Feedback

~10% of E_{SN} goes into accelerating particles up to TeV energies at the forward shock (cosmic rays)

- 1. CRs can drive galactic winds
- 2. CRs can suppress star formation
- 3. CRs can affect wind properties: CR winds are cooler, multiphase, accelerated more gently

4. CRs can affect CGM properties: CGM is cooler and metal-enriched

Cosmic-Ray Feedback

<u>References</u>: Ipavich75, Breitschwerdt+91, Zirakashvili+96, Ptuskin+97, Everett+08, Jubelgas+08, Socrates+08, Everett+10, Samui+10, Wadepuhl+11, Dorfi+12, Uhlig+12, Booth+13, Hanasz+13, Salem+14, Girichidis+16, Liang+16, Pakmor+16, Ruszkowski+16, Simpson+16, Pfrommer+17a,b, Recchia+17, Ruszkowski+17, Wiener+17, Butsky+18, Chan+18, Farber+18, Girichidis+18, Heintz+18, Holguin+18, Jacob+18, Mao+18, Samui+18, Butsky+18, Chan+19, Hopkins+19, Brüggen+20, Buck+20, Bustard+20, Butsky+20, Dashyan+19, Hopkins20abcd, Jana+20, Ji+20....

Feedback Uncertainties

Feedback is one of the biggest uncertainties in star and galaxy formation models today

Feedback Challenge #1: Dynamic Range

~ I рс I AU ~ 5е-6 рс

~100 рс

~10 kpc

Solutions:

Observations: Study MW and nearby galaxies where all scales are observable Theory: Zoom-in simulations give pc resolution

Feedback Challenge #2: **Need Observational Constraints** Radiation Pressure (direct and dust-processed) **Optical/UV/IR** Photoionization Heating **Optical/Radio** Stellar Winds X-rays Supernovae X-rays/Radio Protostellar Jets Optical/IR/mm Cosmic rays Gamma-rays/Radio

Feedback Challenge #2: Need Observational Constraints - Solutions

Feedback Challenge #3: Where is Energy/Momentum Deposited? Stars move.

46% of O stars and 10% of B stars are "runaway" (with $v > 30 \text{ km s}^{-1}$)

OB stars travel 50-500 pc before exploding as SNe

Runaway stars are located in much less dense regions leads to higher escape fractions

Kimm & Cen14

Feedback Challenge #3: Where is Energy/Momentum Deposited?

Walch+15

Solutions

Theory: Test different placement of SNe and compare simulation results to observables.

Feedback Challenge #3:Where is Energy/Momentum Deposited?Where is Energy/Momentum Deposited?RandomClusteredPeak

Walch+15

Feedback Challenge #3: Where is Energy/Momentum Deposited? Solutions

Observations:

Use Atacama Large Millimeter/submillimeter Array (ALMA) data to show how close SNe are to molecular clouds (Mayker, Leroy, LL+ in prep)

Type Ia SNe preferentially occur in lower surface density locations far from molecular gas

Core-collapse SNe occur in higher surface density in/near molecular gas

Feedback Challenge #4: Many Mechanisms Dominant feedback mode changes with time

Agertz et al. 2013

Feedback Challenge #4: Many Mechanisms In simulations, different mechanisms produce vastly different galaxies at z~0 (Aquila Comparison Project: Scannapieco et al. 2011)

Major differences in: Morphology Radius Gas Fraction Stellar Masses Star Formation Histories

 $M_{stars} \sim 4x10^{10} - 3x10^{11} M_{sun}$ SFR ~ 0.1-10 M_{sun}/yr

musical at more density (he dit / he d)

Feedback Challenge #4: Many Mechanisms

Solutions:

Theory: Incorporate many mechanisms; compare relative role of those mechanisms with e.g., age, mass, conditions

Rahner+17

Dale+14

Feedback Challenge #4: Many Mechanisms Observations: Exploit multiwavelength data; study many

sources at different ages / conditions - my group's approach

Measuring pressures associated with each mechanism

Pressure Source	Direct Radiation from stars	
Relation	$P_{dir} = u_{v} = \frac{3L_{bol}}{4\pi r^{2}c}$	
Methods	UBV photometry or radio free-free emission →L _{bol}	
Data	Optical or Radio	

Measuring pressures associated with each mechanism

Pressure Source	Direct Radiation from stars	Dust-Processed Radiation	
Relation	$P_{dir} = u_{v} = \frac{3L_{bol}}{4\pi r^{2}c}$	$P_{IR} = \frac{I}{3} u_{v}$	
Methods	UBV photometry or radio free-free emission →L _{bol}	IR SED modeling (e.g., Draine & Li 2007) → u _v	
Data	Optical or Radio	Infrared	

Measuring pressures associated with each mechanism

Pressure Source	Direct Radiation from stars	Dust-Processed Radiation	Photoionization (Warm HII Gas)
Relation	$P_{dir} = u_{v} = \frac{3L_{bol}}{4\pi r^{2}c}$	$P_{IR} = \frac{I}{3} u_{v}$	Рніі = nніi kTніi
Methods	UBV photometry or radio free-free emission →L _{bol}	IR SED modeling (e.g., Draine & Li 2007) → u _v	Obtain n _{HII} using flux density of free-free emission
Data	Optical or Radio	Infrared	Radio

Measuring pressures associated with each mechanism

Pressure Source	Direct Radiation from stars	Dust-Processed Radiation	Photoionization (Warm HII Gas)	Stellar Winds/ SNe (Hot Gas)
Relation	$P_{dir} = u_{v} = \frac{3L_{bol}}{4\pi r^{2}c}$	$P_{IR} = \frac{I}{3} u_{v}$	P _{HII} = n _{HII} kT _{HII}	$P_x = 2 n_x kT_x$
Methods	UBV photometry or radio free-free emission →L _{bol}	IR SED modeling (e.g., Draine & Li 2007) → u _v	Obtain n _{HII} using flux density of free-free emission	X-ray spectral modeling of bremsstrahlung
Data	Optical or Radio	Infrared	Radio	X-ray

HII Regions in the Magellanic Clouds

LMC

Spitzer SAGE, SAGE-SMC Teams

SMC

R ~ 3-200 pc n ~ 1 cm⁻³

10 c (dyn cm⁻²) 10 10¹ 10^{2} R (pc)

LL+14

Photoionization > Dust-Processed Radiation > Winds/SNe > Direct Radiation

Putting it All Together: Measuring Feedback Observationally Compact HII Regions

 $n > 10^4 \text{ cm}^{-3}$

R < 0.1 pc Olivier, LL+20, arXiv:2009.10079 Dust-Processed Radiation > Photoionization ~ Direct Radiation (Winds ?)

 $f_{trap} = 1 + P_{IR}/P_{dir}$ has a median of ~8

No trend in f_{trap} with HII region radius < 0.5 pc

$$\dot{E}_{\rm rad} = f_{\rm trap} L_{\rm bol}$$
$$\dot{p}_{\rm rad} = \frac{\dot{E}_{\rm rad}}{c}$$

Olivier, LL+20, arXiv:2009.10079

Integral field spectroscopy enables characterization of the stellar content powering HII regions as well as measurement of their gas properties (e.g., density, kinematics)

> Feedback pressures

McLeod+19 Density structure

Velocity structure

Future: Measuring Feedback Observationally with SDSS-V

SDSS-V Local Volume Mapper (LVM) will survey the Milky Way, SMC, LMC, M31, and other Local galaxies doing IFS. It will connect small (tens of pc) to large (kpc) scales.

Kollmeier+17

https://www.sdss.org/future/lvm/

Future: Measuring Feedback Observationally with Lynx

Lynx (successor to Chandra) will enable inventories of star clusters and hot gas from feedback

Detect X-rays from all stars (brown dwarfs up to O/WR stars) out to d ~ 5 kpc through column densities of $N_H \sim 10^{23}$ cm⁻²

Larger Scales: Galactic Outflows

Galaxy-scale outflows driven by star formation are ubiquitous (Heckman+90, Veilleux+05, Rubin+14)

Prevailing picture is that outflows are driven by hot gas shock-heated by SNe that entrains dust, cold, and warm gases in the flow (e.g., Chevalier & Clegg 85)

Many open questions remain: how does the hot wind couple to the cooler clouds? How does the wind evolve, and how many metals does it carry? IR Ha X-rays

Count Maps

Comparison to Physical Parameters

Ste

Future: Galaxy-Scale Outflows

Li & Wang13, Bauer+08

Conducting a similar analysis for the 15 nearby, edge-on starbursting galaxies.

Future: Galaxy-Scale Outflows

IR X-rays

30"

Lopez & Lopez, in prep.

We are turning next to NGC 253. We find that the diffuse X-rays trace the disk's spiral structure and doing a spatially-resolved analysis now to measure the gradients in temperature/density/metallicity of outflow.

Conclusions

Stellar feedback, the injection of energy and momentum by stars, is important on small (~1 pc) and large (>10 kpc) scales

There are many challenges to assessing feedback: 1) dynamic range; 2) need observational constraints; 3) where is the energy/momentum deposited?; 4) there are many mechanisms that vary with time & conditions

There are observational and theoretical solutions to each problem, and a lot of progress in the last 5 years assessing dynamical role of feedback on small & large scales

Multiwavelength approach enables evaluation of comparative role of feedback modes versus e.g., stellar age, conditions

X-ray and gamma-ray observations constrain presence / properties of galactic outflows from star-forming galaxies.